Metamath Proof Explorer


Theorem sylibd

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylibd.1 φ ψ χ
sylibd.2 φ χ θ
Assertion sylibd φ ψ θ

Proof

Step Hyp Ref Expression
1 sylibd.1 φ ψ χ
2 sylibd.2 φ χ θ
3 2 biimpd φ χ θ
4 1 3 syld φ ψ θ