Metamath Proof Explorer


Theorem sylibd

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylibd.1 ( 𝜑 → ( 𝜓𝜒 ) )
sylibd.2 ( 𝜑 → ( 𝜒𝜃 ) )
Assertion sylibd ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 sylibd.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 sylibd.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 2 biimpd ( 𝜑 → ( 𝜒𝜃 ) )
4 1 3 syld ( 𝜑 → ( 𝜓𝜃 ) )