Metamath Proof Explorer


Theorem sylibd

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylibd.1
|- ( ph -> ( ps -> ch ) )
sylibd.2
|- ( ph -> ( ch <-> th ) )
Assertion sylibd
|- ( ph -> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 sylibd.1
 |-  ( ph -> ( ps -> ch ) )
2 sylibd.2
 |-  ( ph -> ( ch <-> th ) )
3 2 biimpd
 |-  ( ph -> ( ch -> th ) )
4 1 3 syld
 |-  ( ph -> ( ps -> th ) )