Metamath Proof Explorer


Theorem sylnbir

Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013)

Ref Expression
Hypotheses sylnbir.1 ψφ
sylnbir.2 ¬ψχ
Assertion sylnbir ¬φχ

Proof

Step Hyp Ref Expression
1 sylnbir.1 ψφ
2 sylnbir.2 ¬ψχ
3 1 bicomi φψ
4 3 2 sylnbi ¬φχ