Metamath Proof Explorer


Theorem syl3anr2

Description: A syllogism inference. (Contributed by NM, 1-Aug-2007) (Proof shortened by Wolf Lammen, 27-Jun-2022)

Ref Expression
Hypotheses syl3anr2.1 φθ
syl3anr2.2 χψθτη
Assertion syl3anr2 χψφτη

Proof

Step Hyp Ref Expression
1 syl3anr2.1 φθ
2 syl3anr2.2 χψθτη
3 1 3anim2i ψφτψθτ
4 3 2 sylan2 χψφτη