Metamath Proof Explorer


Theorem nanim

Description: Implication in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007)

Ref Expression
Assertion nanim φψφψψ

Proof

Step Hyp Ref Expression
1 nannan φψψφψψ
2 anidmdbi φψψφψ
3 1 2 bitr2i φψφψψ