Metamath Proof Explorer


Theorem nanim

Description: Implication in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007)

Ref Expression
Assertion nanim ( ( 𝜑𝜓 ) ↔ ( 𝜑 ⊼ ( 𝜓𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 nannan ( ( 𝜑 ⊼ ( 𝜓𝜓 ) ) ↔ ( 𝜑 → ( 𝜓𝜓 ) ) )
2 anidmdbi ( ( 𝜑 → ( 𝜓𝜓 ) ) ↔ ( 𝜑𝜓 ) )
3 1 2 bitr2i ( ( 𝜑𝜓 ) ↔ ( 𝜑 ⊼ ( 𝜓𝜓 ) ) )