Metamath Proof Explorer


Theorem nannot

Description: Negation in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007) (Revised by Wolf Lammen, 26-Jun-2020)

Ref Expression
Assertion nannot ( ¬ 𝜑 ↔ ( 𝜑𝜑 ) )

Proof

Step Hyp Ref Expression
1 dfnan2 ( ( 𝜑𝜑 ) ↔ ( 𝜑 → ¬ 𝜑 ) )
2 pm4.8 ( ( 𝜑 → ¬ 𝜑 ) ↔ ¬ 𝜑 )
3 1 2 bitr2i ( ¬ 𝜑 ↔ ( 𝜑𝜑 ) )