| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfbi3 | ⊢ ( ( 𝜑  ↔  𝜓 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( ¬  𝜑  ∧  ¬  𝜓 ) ) ) | 
						
							| 2 |  | df-or | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∨  ( ¬  𝜑  ∧  ¬  𝜓 ) )  ↔  ( ¬  ( 𝜑  ∧  𝜓 )  →  ( ¬  𝜑  ∧  ¬  𝜓 ) ) ) | 
						
							| 3 |  | df-nan | ⊢ ( ( 𝜑  ⊼  𝜓 )  ↔  ¬  ( 𝜑  ∧  𝜓 ) ) | 
						
							| 4 | 3 | bicomi | ⊢ ( ¬  ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ⊼  𝜓 ) ) | 
						
							| 5 |  | nannot | ⊢ ( ¬  𝜑  ↔  ( 𝜑  ⊼  𝜑 ) ) | 
						
							| 6 |  | nannot | ⊢ ( ¬  𝜓  ↔  ( 𝜓  ⊼  𝜓 ) ) | 
						
							| 7 | 5 6 | anbi12i | ⊢ ( ( ¬  𝜑  ∧  ¬  𝜓 )  ↔  ( ( 𝜑  ⊼  𝜑 )  ∧  ( 𝜓  ⊼  𝜓 ) ) ) | 
						
							| 8 | 4 7 | imbi12i | ⊢ ( ( ¬  ( 𝜑  ∧  𝜓 )  →  ( ¬  𝜑  ∧  ¬  𝜓 ) )  ↔  ( ( 𝜑  ⊼  𝜓 )  →  ( ( 𝜑  ⊼  𝜑 )  ∧  ( 𝜓  ⊼  𝜓 ) ) ) ) | 
						
							| 9 | 1 2 8 | 3bitri | ⊢ ( ( 𝜑  ↔  𝜓 )  ↔  ( ( 𝜑  ⊼  𝜓 )  →  ( ( 𝜑  ⊼  𝜑 )  ∧  ( 𝜓  ⊼  𝜓 ) ) ) ) | 
						
							| 10 |  | nannan | ⊢ ( ( ( 𝜑  ⊼  𝜓 )  ⊼  ( ( 𝜑  ⊼  𝜑 )  ⊼  ( 𝜓  ⊼  𝜓 ) ) )  ↔  ( ( 𝜑  ⊼  𝜓 )  →  ( ( 𝜑  ⊼  𝜑 )  ∧  ( 𝜓  ⊼  𝜓 ) ) ) ) | 
						
							| 11 | 9 10 | bitr4i | ⊢ ( ( 𝜑  ↔  𝜓 )  ↔  ( ( 𝜑  ⊼  𝜓 )  ⊼  ( ( 𝜑  ⊼  𝜑 )  ⊼  ( 𝜓  ⊼  𝜓 ) ) ) ) |