Description: Conjoin both sides of two equivalences. (Contributed by NM, 12-Mar-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | anbi12.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
anbi12.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | ||
Assertion | anbi12i | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
2 | anbi12.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | |
3 | 1 | anbi1i | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ) ) |
4 | 2 | anbi2i | ⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜃 ) ) |
5 | 3 4 | bitri | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜃 ) ) |