Metamath Proof Explorer


Theorem anbi12i

Description: Conjoin both sides of two equivalences. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypotheses anbi12.1 ( 𝜑𝜓 )
anbi12.2 ( 𝜒𝜃 )
Assertion anbi12i ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 anbi12.1 ( 𝜑𝜓 )
2 anbi12.2 ( 𝜒𝜃 )
3 1 anbi1i ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) )
4 2 anbi2i ( ( 𝜓𝜒 ) ↔ ( 𝜓𝜃 ) )
5 3 4 bitri ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )