Metamath Proof Explorer


Theorem anbi12i

Description: Conjoin both sides of two equivalences. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypotheses anbi12.1
|- ( ph <-> ps )
anbi12.2
|- ( ch <-> th )
Assertion anbi12i
|- ( ( ph /\ ch ) <-> ( ps /\ th ) )

Proof

Step Hyp Ref Expression
1 anbi12.1
 |-  ( ph <-> ps )
2 anbi12.2
 |-  ( ch <-> th )
3 1 anbi1i
 |-  ( ( ph /\ ch ) <-> ( ps /\ ch ) )
4 2 anbi2i
 |-  ( ( ps /\ ch ) <-> ( ps /\ th ) )
5 3 4 bitri
 |-  ( ( ph /\ ch ) <-> ( ps /\ th ) )