| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfbi3 |  |-  ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) ) | 
						
							| 2 |  | df-or |  |-  ( ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) <-> ( -. ( ph /\ ps ) -> ( -. ph /\ -. ps ) ) ) | 
						
							| 3 |  | df-nan |  |-  ( ( ph -/\ ps ) <-> -. ( ph /\ ps ) ) | 
						
							| 4 | 3 | bicomi |  |-  ( -. ( ph /\ ps ) <-> ( ph -/\ ps ) ) | 
						
							| 5 |  | nannot |  |-  ( -. ph <-> ( ph -/\ ph ) ) | 
						
							| 6 |  | nannot |  |-  ( -. ps <-> ( ps -/\ ps ) ) | 
						
							| 7 | 5 6 | anbi12i |  |-  ( ( -. ph /\ -. ps ) <-> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) | 
						
							| 8 | 4 7 | imbi12i |  |-  ( ( -. ( ph /\ ps ) -> ( -. ph /\ -. ps ) ) <-> ( ( ph -/\ ps ) -> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) ) | 
						
							| 9 | 1 2 8 | 3bitri |  |-  ( ( ph <-> ps ) <-> ( ( ph -/\ ps ) -> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) ) | 
						
							| 10 |  | nannan |  |-  ( ( ( ph -/\ ps ) -/\ ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) ) <-> ( ( ph -/\ ps ) -> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) ) | 
						
							| 11 | 9 10 | bitr4i |  |-  ( ( ph <-> ps ) <-> ( ( ph -/\ ps ) -/\ ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) ) ) |