Metamath Proof Explorer


Theorem 3anbi2i

Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006)

Ref Expression
Hypothesis 3anbi1i.1 φψ
Assertion 3anbi2i χφθχψθ

Proof

Step Hyp Ref Expression
1 3anbi1i.1 φψ
2 biid χχ
3 biid θθ
4 2 1 3 3anbi123i χφθχψθ