Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)
|
|
Ref |
Expression |
|
Hypotheses |
mpsyl4anc.1 |
|
|
|
mpsyl4anc.2 |
|
|
|
mpsyl4anc.3 |
|
|
|
mpsyl4anc.4 |
|
|
|
mpsyl4anc.5 |
|
|
Assertion |
mpsyl4anc |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpsyl4anc.1 |
|
| 2 |
|
mpsyl4anc.2 |
|
| 3 |
|
mpsyl4anc.3 |
|
| 4 |
|
mpsyl4anc.4 |
|
| 5 |
|
mpsyl4anc.5 |
|
| 6 |
1
|
a1i |
|
| 7 |
2
|
a1i |
|
| 8 |
3
|
a1i |
|
| 9 |
6 7 8 4 5
|
syl1111anc |
|