Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)
|
|
Ref |
Expression |
|
Hypotheses |
mpsyl4anc.1 |
⊢ 𝜑 |
|
|
mpsyl4anc.2 |
⊢ 𝜓 |
|
|
mpsyl4anc.3 |
⊢ 𝜒 |
|
|
mpsyl4anc.4 |
⊢ ( 𝜃 → 𝜏 ) |
|
|
mpsyl4anc.5 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜏 ) → 𝜂 ) |
|
Assertion |
mpsyl4anc |
⊢ ( 𝜃 → 𝜂 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpsyl4anc.1 |
⊢ 𝜑 |
2 |
|
mpsyl4anc.2 |
⊢ 𝜓 |
3 |
|
mpsyl4anc.3 |
⊢ 𝜒 |
4 |
|
mpsyl4anc.4 |
⊢ ( 𝜃 → 𝜏 ) |
5 |
|
mpsyl4anc.5 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜏 ) → 𝜂 ) |
6 |
1
|
a1i |
⊢ ( 𝜃 → 𝜑 ) |
7 |
2
|
a1i |
⊢ ( 𝜃 → 𝜓 ) |
8 |
3
|
a1i |
⊢ ( 𝜃 → 𝜒 ) |
9 |
6 7 8 4 5
|
syl1111anc |
⊢ ( 𝜃 → 𝜂 ) |