Metamath Proof Explorer


Theorem pm4.87

Description: Theorem *4.87 of WhiteheadRussell p. 122. (Contributed by NM, 3-Jan-2005) (Proof shortened by Eric Schmidt, 26-Oct-2006)

Ref Expression
Assertion pm4.87 ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) ∧ ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( 𝜓 → ( 𝜑𝜒 ) ) ) ) ∧ ( ( 𝜓 → ( 𝜑𝜒 ) ) ↔ ( ( 𝜓𝜑 ) → 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 impexp ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) )
2 bi2.04 ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( 𝜓 → ( 𝜑𝜒 ) ) )
3 1 2 pm3.2i ( ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) ∧ ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( 𝜓 → ( 𝜑𝜒 ) ) ) )
4 impexp ( ( ( 𝜓𝜑 ) → 𝜒 ) ↔ ( 𝜓 → ( 𝜑𝜒 ) ) )
5 4 bicomi ( ( 𝜓 → ( 𝜑𝜒 ) ) ↔ ( ( 𝜓𝜑 ) → 𝜒 ) )
6 3 5 pm3.2i ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) ) ∧ ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( 𝜓 → ( 𝜑𝜒 ) ) ) ) ∧ ( ( 𝜓 → ( 𝜑𝜒 ) ) ↔ ( ( 𝜓𝜑 ) → 𝜒 ) ) )