Description: Theorem *4.87 of WhiteheadRussell p. 122. (Contributed by NM, 3-Jan-2005) (Proof shortened by Eric Schmidt, 26-Oct-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.87 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ∧ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) ∧ ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) | |
2 | bi2.04 | ⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) | |
3 | 1 2 | pm3.2i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ∧ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) |
4 | impexp | ⊢ ( ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) ↔ ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) | |
5 | 4 | bicomi | ⊢ ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) ) |
6 | 3 5 | pm3.2i | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ∧ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) ∧ ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) ) ) |