Metamath Proof Explorer


Theorem dedlemb

Description: Lemma for weak deduction theorem. See also ifpfal . (Contributed by NM, 15-May-1999) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Assertion dedlemb ¬φχψφχ¬φ

Proof

Step Hyp Ref Expression
1 olc χ¬φψφχ¬φ
2 1 expcom ¬φχψφχ¬φ
3 pm2.21 ¬φφχ
4 3 adantld ¬φψφχ
5 simpl χ¬φχ
6 5 a1i ¬φχ¬φχ
7 4 6 jaod ¬φψφχ¬φχ
8 2 7 impbid ¬φχψφχ¬φ