Metamath Proof Explorer


Theorem cases2

Description: Case disjunction according to the value of ph . (Contributed by BJ, 6-Apr-2019) (Proof shortened by Wolf Lammen, 28-Feb-2022)

Ref Expression
Assertion cases2 φψ¬φχφψ¬φχ

Proof

Step Hyp Ref Expression
1 pm4.83 φψφχ¬φ¬φψφχ¬φψφχ¬φ
2 dedlema φψψφχ¬φ
3 2 pm5.74i φψφψφχ¬φ
4 dedlemb ¬φχψφχ¬φ
5 4 pm5.74i ¬φχ¬φψφχ¬φ
6 3 5 anbi12i φψ¬φχφψφχ¬φ¬φψφχ¬φ
7 ancom φψψφ
8 ancom ¬φχχ¬φ
9 7 8 orbi12i φψ¬φχψφχ¬φ
10 1 6 9 3bitr4ri φψ¬φχφψ¬φχ