Metamath Proof Explorer


Theorem syl3c

Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011)

Ref Expression
Hypotheses syl3c.1 φψ
syl3c.2 φχ
syl3c.3 φθ
syl3c.4 ψχθτ
Assertion syl3c φτ

Proof

Step Hyp Ref Expression
1 syl3c.1 φψ
2 syl3c.2 φχ
3 syl3c.3 φθ
4 syl3c.4 ψχθτ
5 1 2 4 sylc φθτ
6 3 5 mpd φτ