Metamath Proof Explorer


Theorem syl3c

Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011)

Ref Expression
Hypotheses syl3c.1 ( 𝜑𝜓 )
syl3c.2 ( 𝜑𝜒 )
syl3c.3 ( 𝜑𝜃 )
syl3c.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
Assertion syl3c ( 𝜑𝜏 )

Proof

Step Hyp Ref Expression
1 syl3c.1 ( 𝜑𝜓 )
2 syl3c.2 ( 𝜑𝜒 )
3 syl3c.3 ( 𝜑𝜃 )
4 syl3c.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
5 1 2 4 sylc ( 𝜑 → ( 𝜃𝜏 ) )
6 3 5 mpd ( 𝜑𝜏 )