Metamath Proof Explorer


Theorem syl3anbrc

Description: Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014)

Ref Expression
Hypotheses syl3anbrc.1 φ ψ
syl3anbrc.2 φ χ
syl3anbrc.3 φ θ
syl3anbrc.4 τ ψ χ θ
Assertion syl3anbrc φ τ

Proof

Step Hyp Ref Expression
1 syl3anbrc.1 φ ψ
2 syl3anbrc.2 φ χ
3 syl3anbrc.3 φ θ
4 syl3anbrc.4 τ ψ χ θ
5 1 2 3 3jca φ ψ χ θ
6 5 4 sylibr φ τ