Metamath Proof Explorer


Theorem syl3anbrc

Description: Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014)

Ref Expression
Hypotheses syl3anbrc.1
|- ( ph -> ps )
syl3anbrc.2
|- ( ph -> ch )
syl3anbrc.3
|- ( ph -> th )
syl3anbrc.4
|- ( ta <-> ( ps /\ ch /\ th ) )
Assertion syl3anbrc
|- ( ph -> ta )

Proof

Step Hyp Ref Expression
1 syl3anbrc.1
 |-  ( ph -> ps )
2 syl3anbrc.2
 |-  ( ph -> ch )
3 syl3anbrc.3
 |-  ( ph -> th )
4 syl3anbrc.4
 |-  ( ta <-> ( ps /\ ch /\ th ) )
5 1 2 3 3jca
 |-  ( ph -> ( ps /\ ch /\ th ) )
6 5 4 sylibr
 |-  ( ph -> ta )