Metamath Proof Explorer


Theorem syl3an1br

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)

Ref Expression
Hypotheses syl3an1br.1 ψφ
syl3an1br.2 ψχθτ
Assertion syl3an1br φχθτ

Proof

Step Hyp Ref Expression
1 syl3an1br.1 ψφ
2 syl3an1br.2 ψχθτ
3 1 biimpri φψ
4 3 2 syl3an1 φχθτ