Metamath Proof Explorer


Theorem syl3an2br

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)

Ref Expression
Hypotheses syl3an2br.1 χφ
syl3an2br.2 ψχθτ
Assertion syl3an2br ψφθτ

Proof

Step Hyp Ref Expression
1 syl3an2br.1 χφ
2 syl3an2br.2 ψχθτ
3 1 biimpri φχ
4 3 2 syl3an2 ψφθτ