Metamath Proof Explorer


Theorem syl3an3br

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)

Ref Expression
Hypotheses syl3an3br.1 θφ
syl3an3br.2 ψχθτ
Assertion syl3an3br ψχφτ

Proof

Step Hyp Ref Expression
1 syl3an3br.1 θφ
2 syl3an3br.2 ψχθτ
3 1 biimpri φθ
4 3 2 syl3an3 ψχφτ