Metamath Proof Explorer
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006) (Proof
shortened by Wolf Lammen, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
condan.1 |
|
|
|
condan.2 |
|
|
Assertion |
condan |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
condan.1 |
|
2 |
|
condan.2 |
|
3 |
1 2
|
pm2.65da |
|
4 |
3
|
notnotrd |
|