Metamath Proof Explorer


Theorem ad5ant24

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis ad5ant2.1 φψχ
Assertion ad5ant24 θφτψηχ

Proof

Step Hyp Ref Expression
1 ad5ant2.1 φψχ
2 1 adantll θφψχ
3 2 ad4ant13 θφτψηχ