Metamath Proof Explorer


Theorem adantlrr

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004) (Proof shortened by Wolf Lammen, 4-Dec-2012)

Ref Expression
Hypothesis adantl2.1 φψχθ
Assertion adantlrr φψτχθ

Proof

Step Hyp Ref Expression
1 adantl2.1 φψχθ
2 simpl ψτψ
3 2 1 sylanl2 φψτχθ