Metamath Proof Explorer


Theorem ad5ant245

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis ad5ant.1 φψχθ
Assertion ad5ant245 τφηψχθ

Proof

Step Hyp Ref Expression
1 ad5ant.1 φψχθ
2 1 3adant1l τφψχθ
3 2 ad4ant134 τφηψχθ