Metamath Proof Explorer


Theorem 3anandis

Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007)

Ref Expression
Hypothesis 3anandis.1 φψφχφθτ
Assertion 3anandis φψχθτ

Proof

Step Hyp Ref Expression
1 3anandis.1 φψφχφθτ
2 simpl φψχθφ
3 simpr1 φψχθψ
4 simpr2 φψχθχ
5 simpr3 φψχθθ
6 2 3 2 4 2 5 1 syl222anc φψχθτ