Metamath Proof Explorer


Theorem mtbid

Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995)

Ref Expression
Hypotheses mtbid.min φ ¬ ψ
mtbid.maj φ ψ χ
Assertion mtbid φ ¬ χ

Proof

Step Hyp Ref Expression
1 mtbid.min φ ¬ ψ
2 mtbid.maj φ ψ χ
3 2 biimprd φ χ ψ
4 1 3 mtod φ ¬ χ