Metamath Proof Explorer


Theorem mtbid

Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995)

Ref Expression
Hypotheses mtbid.min ( 𝜑 → ¬ 𝜓 )
mtbid.maj ( 𝜑 → ( 𝜓𝜒 ) )
Assertion mtbid ( 𝜑 → ¬ 𝜒 )

Proof

Step Hyp Ref Expression
1 mtbid.min ( 𝜑 → ¬ 𝜓 )
2 mtbid.maj ( 𝜑 → ( 𝜓𝜒 ) )
3 2 biimprd ( 𝜑 → ( 𝜒𝜓 ) )
4 1 3 mtod ( 𝜑 → ¬ 𝜒 )