Metamath Proof Explorer


Theorem pm5.21ndd

Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012) (Proof shortened by Wolf Lammen, 6-Oct-2013)

Ref Expression
Hypotheses pm5.21ndd.1 φχψ
pm5.21ndd.2 φθψ
pm5.21ndd.3 φψχθ
Assertion pm5.21ndd φχθ

Proof

Step Hyp Ref Expression
1 pm5.21ndd.1 φχψ
2 pm5.21ndd.2 φθψ
3 pm5.21ndd.3 φψχθ
4 1 con3d φ¬ψ¬χ
5 2 con3d φ¬ψ¬θ
6 pm5.21im ¬χ¬θχθ
7 4 5 6 syl6c φ¬ψχθ
8 3 7 pm2.61d φχθ