Metamath Proof Explorer


Theorem pm5.21ndd

Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012) (Proof shortened by Wolf Lammen, 6-Oct-2013)

Ref Expression
Hypotheses pm5.21ndd.1 φ χ ψ
pm5.21ndd.2 φ θ ψ
pm5.21ndd.3 φ ψ χ θ
Assertion pm5.21ndd φ χ θ

Proof

Step Hyp Ref Expression
1 pm5.21ndd.1 φ χ ψ
2 pm5.21ndd.2 φ θ ψ
3 pm5.21ndd.3 φ ψ χ θ
4 1 con3d φ ¬ ψ ¬ χ
5 2 con3d φ ¬ ψ ¬ θ
6 pm5.21im ¬ χ ¬ θ χ θ
7 4 5 6 syl6c φ ¬ ψ χ θ
8 3 7 pm2.61d φ χ θ