Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical equivalence
pm5.21ndd
Metamath Proof Explorer
Description: Eliminate an antecedent implied by each side of a biconditional,
deduction version. (Contributed by Paul Chapman , 21-Nov-2012) (Proof
shortened by Wolf Lammen , 6-Oct-2013)
Ref
Expression
Hypotheses
pm5.21ndd.1
⊢ φ → χ → ψ
pm5.21ndd.2
⊢ φ → θ → ψ
pm5.21ndd.3
⊢ φ → ψ → χ ↔ θ
Assertion
pm5.21ndd
⊢ φ → χ ↔ θ
Proof
Step
Hyp
Ref
Expression
1
pm5.21ndd.1
⊢ φ → χ → ψ
2
pm5.21ndd.2
⊢ φ → θ → ψ
3
pm5.21ndd.3
⊢ φ → ψ → χ ↔ θ
4
1
con3d
⊢ φ → ¬ ψ → ¬ χ
5
2
con3d
⊢ φ → ¬ ψ → ¬ θ
6
pm5.21im
⊢ ¬ χ → ¬ θ → χ ↔ θ
7
4 5 6
syl6c
⊢ φ → ¬ ψ → χ ↔ θ
8
3 7
pm2.61d
⊢ φ → χ ↔ θ