Metamath Proof Explorer


Theorem 3adant3

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995) (Proof shortened by Wolf Lammen, 21-Jun-2022)

Ref Expression
Hypothesis 3adant.1 φ ψ χ
Assertion 3adant3 φ ψ θ χ

Proof

Step Hyp Ref Expression
1 3adant.1 φ ψ χ
2 1 adantrr φ ψ θ χ
3 2 3impb φ ψ θ χ