Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995) (Proof shortened by Wolf Lammen, 21-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3adant.1 | |- ( ( ph /\ ps ) -> ch ) |
|
Assertion | 3adant3 | |- ( ( ph /\ ps /\ th ) -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adant.1 | |- ( ( ph /\ ps ) -> ch ) |
|
2 | 1 | adantrr | |- ( ( ph /\ ( ps /\ th ) ) -> ch ) |
3 | 2 | 3impb | |- ( ( ph /\ ps /\ th ) -> ch ) |