Metamath Proof Explorer


Theorem simprbi

Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998)

Ref Expression
Hypothesis simprbi.1 φψχ
Assertion simprbi φχ

Proof

Step Hyp Ref Expression
1 simprbi.1 φψχ
2 1 biimpi φψχ
3 2 simprd φχ