Metamath Proof Explorer


Theorem simprbi

Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998)

Ref Expression
Hypothesis simprbi.1 φ ψ χ
Assertion simprbi φ χ

Proof

Step Hyp Ref Expression
1 simprbi.1 φ ψ χ
2 1 biimpi φ ψ χ
3 2 simprd φ χ