Metamath Proof Explorer


Theorem simprbi

Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998)

Ref Expression
Hypothesis simprbi.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
Assertion simprbi ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 simprbi.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 1 biimpi ( 𝜑 → ( 𝜓𝜒 ) )
3 2 simprd ( 𝜑𝜒 )