Metamath Proof Explorer


Theorem imbitrid

Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993)

Ref Expression
Hypotheses imbitrid.1 φψ
imbitrid.2 χψθ
Assertion imbitrid χφθ

Proof

Step Hyp Ref Expression
1 imbitrid.1 φψ
2 imbitrid.2 χψθ
3 2 biimpd χψθ
4 1 3 syl5 χφθ