Metamath Proof Explorer


Theorem biimprcd

Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994) (Proof shortened by Wolf Lammen, 20-Dec-2013)

Ref Expression
Hypothesis biimpcd.1 φ ψ χ
Assertion biimprcd χ φ ψ

Proof

Step Hyp Ref Expression
1 biimpcd.1 φ ψ χ
2 id χ χ
3 2 1 syl5ibrcom χ φ ψ