Metamath Proof Explorer


Theorem 3orel2

Description: Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011) (Proof shortened by Andrew Salmon, 25-May-2011)

Ref Expression
Assertion 3orel2 ¬ ψ φ ψ χ φ χ

Proof

Step Hyp Ref Expression
1 3orrot φ ψ χ ψ χ φ
2 3orel1 ¬ ψ ψ χ φ χ φ
3 orcom χ φ φ χ
4 2 3 syl6ib ¬ ψ ψ χ φ φ χ
5 1 4 syl5bi ¬ ψ φ ψ χ φ χ