Description: Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011) (Proof shortened by Andrew Salmon, 25-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | 3orel2 | ⊢ ( ¬ 𝜓 → ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3orrot | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( 𝜓 ∨ 𝜒 ∨ 𝜑 ) ) | |
2 | 3orel1 | ⊢ ( ¬ 𝜓 → ( ( 𝜓 ∨ 𝜒 ∨ 𝜑 ) → ( 𝜒 ∨ 𝜑 ) ) ) | |
3 | orcom | ⊢ ( ( 𝜒 ∨ 𝜑 ) ↔ ( 𝜑 ∨ 𝜒 ) ) | |
4 | 2 3 | syl6ib | ⊢ ( ¬ 𝜓 → ( ( 𝜓 ∨ 𝜒 ∨ 𝜑 ) → ( 𝜑 ∨ 𝜒 ) ) ) |
5 | 1 4 | syl5bi | ⊢ ( ¬ 𝜓 → ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜒 ) ) ) |