Metamath Proof Explorer


Theorem ancrd

Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994) (Proof shortened by Wolf Lammen, 1-Nov-2012)

Ref Expression
Hypothesis ancrd.1 φψχ
Assertion ancrd φψχψ

Proof

Step Hyp Ref Expression
1 ancrd.1 φψχ
2 idd φψψ
3 1 2 jcad φψχψ