Metamath Proof Explorer


Theorem an4s

Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995)

Ref Expression
Hypothesis an4s.1 φψχθτ
Assertion an4s φχψθτ

Proof

Step Hyp Ref Expression
1 an4s.1 φψχθτ
2 an4 φχψθφψχθ
3 2 1 sylbi φχψθτ