Metamath Proof Explorer


Theorem an4s

Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995)

Ref Expression
Hypothesis an4s.1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → 𝜏 )
Assertion an4s ( ( ( 𝜑𝜒 ) ∧ ( 𝜓𝜃 ) ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 an4s.1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → 𝜏 )
2 an4 ( ( ( 𝜑𝜒 ) ∧ ( 𝜓𝜃 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) )
3 2 1 sylbi ( ( ( 𝜑𝜒 ) ∧ ( 𝜓𝜃 ) ) → 𝜏 )