Metamath Proof Explorer


Theorem an4s

Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995)

Ref Expression
Hypothesis an4s.1
|- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta )
Assertion an4s
|- ( ( ( ph /\ ch ) /\ ( ps /\ th ) ) -> ta )

Proof

Step Hyp Ref Expression
1 an4s.1
 |-  ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta )
2 an4
 |-  ( ( ( ph /\ ch ) /\ ( ps /\ th ) ) <-> ( ( ph /\ ps ) /\ ( ch /\ th ) ) )
3 2 1 sylbi
 |-  ( ( ( ph /\ ch ) /\ ( ps /\ th ) ) -> ta )