Metamath Proof Explorer


Theorem intn3an1d

Description: Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Hypothesis intn3and.1 φ¬ψ
Assertion intn3an1d φ¬ψχθ

Proof

Step Hyp Ref Expression
1 intn3and.1 φ¬ψ
2 simp1 ψχθψ
3 1 2 nsyl φ¬ψχθ