Metamath Proof Explorer


Theorem sylanbrc

Description: Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sylanbrc.1 φψ
sylanbrc.2 φχ
sylanbrc.3 θψχ
Assertion sylanbrc φθ

Proof

Step Hyp Ref Expression
1 sylanbrc.1 φψ
2 sylanbrc.2 φχ
3 sylanbrc.3 θψχ
4 1 2 jca φψχ
5 4 3 sylibr φθ