Metamath Proof Explorer


Theorem sylanbrc

Description: Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sylanbrc.1 φ ψ
sylanbrc.2 φ χ
sylanbrc.3 θ ψ χ
Assertion sylanbrc φ θ

Proof

Step Hyp Ref Expression
1 sylanbrc.1 φ ψ
2 sylanbrc.2 φ χ
3 sylanbrc.3 θ ψ χ
4 1 2 jca φ ψ χ
5 4 3 sylibr φ θ