Metamath Proof Explorer


Theorem sylanbrc

Description: Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sylanbrc.1
|- ( ph -> ps )
sylanbrc.2
|- ( ph -> ch )
sylanbrc.3
|- ( th <-> ( ps /\ ch ) )
Assertion sylanbrc
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 sylanbrc.1
 |-  ( ph -> ps )
2 sylanbrc.2
 |-  ( ph -> ch )
3 sylanbrc.3
 |-  ( th <-> ( ps /\ ch ) )
4 1 2 jca
 |-  ( ph -> ( ps /\ ch ) )
5 4 3 sylibr
 |-  ( ph -> th )