Metamath Proof Explorer


Theorem mpii

Description: A doubly nested modus ponens inference. (Contributed by NM, 31-Dec-1993) (Proof shortened by Wolf Lammen, 31-Jul-2012)

Ref Expression
Hypotheses mpii.1 χ
mpii.2 φψχθ
Assertion mpii φψθ

Proof

Step Hyp Ref Expression
1 mpii.1 χ
2 mpii.2 φψχθ
3 1 a1i ψχ
4 3 2 mpdi φψθ