Metamath Proof Explorer


Theorem mpii

Description: A doubly nested modus ponens inference. (Contributed by NM, 31-Dec-1993) (Proof shortened by Wolf Lammen, 31-Jul-2012)

Ref Expression
Hypotheses mpii.1 𝜒
mpii.2 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
Assertion mpii ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 mpii.1 𝜒
2 mpii.2 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
3 1 a1i ( 𝜓𝜒 )
4 3 2 mpdi ( 𝜑 → ( 𝜓𝜃 ) )